Oscillating Polynomials and Approximations to Fractional Powers of x

Richard A. Bell and S. M. Shah ${ }^{1}$
Department of Mathematics, University of Kentucky, Lexington, Kentucky 40506

1. Introduction

In this note we give a brief account of oscillating polynomials and consider the problem of approximations to $x^{1 / k}$, where k is a positive integer. Let c_{i} be real for all i and write

$$
\begin{equation*}
E_{n, k}=\min _{c_{i}} \max _{0 \leqslant x \leqslant 1}\left|x^{1 / k}-\left(c_{0}+c_{1} x+\cdots+c_{n} x^{n}\right)\right| . \tag{1.1}
\end{equation*}
$$

The properties of oscillating polynomials enable us to give a lower bound for $E_{n, k}$ for all $n \geqslant 2$ and $k \geqslant 3$. We use an iteration process (cf. [3]) to find numerical values of $E_{n, k}$ for some n and k.

2. Oscillating Polynomials

Let $0 \leqslant \alpha_{0}<\alpha_{1}<\ldots<\alpha_{n}$ be a given set of integers. Then

$$
\begin{equation*}
p(x)=c_{0} x^{\alpha_{0}}+c_{1} x^{\alpha_{1}}+\cdots+c_{n} x^{\alpha_{n}} \tag{2.1}
\end{equation*}
$$

where c_{i} are all real and $\prod_{i=0}^{n} c_{i} \neq 0$, is said to be an oscillating polynomial (o.p.) in $[0,1]$ with exponents $\alpha_{0}, \ldots, \alpha_{n}$ if $\max _{[0,1]}|p(x)|$ is attained for $n+1$ values of x in $[0,1]$. The following properties of oscillating polynomials are necessary for our work. (See [1], [2].)
(i) To a given set of exponents, there corresponds an o.p. in $[0,1]$ which is unique except for a constant factor.
(ii) Write $M=\max _{[0,1]}|p(x)|$. An o.p. $p(x)$ assumes the values $\pm M$ alternately at $n+1$ points in $[0,1]$.
(iii) Let $p(x)=\sum_{j=0}^{n} A_{j} x^{\alpha_{j}}$ be an o.p. in [0,1] and let $q(x)=\sum_{j=0}^{n} B_{j} x^{\alpha_{j}}$ (all B_{j} real) be another polynomial. Suppose $B_{j}=A_{j}$ for at least one j, where $\alpha_{j}>0$. Then $\max _{[0,1]}|q(x)|>\max _{[0,1]}|p(x)|$.

[^0](iv) Let $p(x)=a_{0} x^{\alpha_{0}}+\sum_{k=1}^{n} a_{k} x^{\alpha_{k}}$ and $q(x)=a_{0} x^{\alpha_{0}}+\sum_{k=1}^{n} b_{k} x^{\beta_{k}}$ be oscillating polynomials such that $0<\alpha_{0}<\alpha_{1}<\beta_{1}<\alpha_{2}<\beta_{2}<\ldots<\alpha_{n}<\beta_{n}$. Then $\max _{[0,1]}|p(x)|<\max _{[0,1]}|q(x)|$.

3. Three Exponents

We now calculate an o.p. $p(x)$ with three exponents $0, h, k(h<k)$. Write $p(x)=a_{0}+a_{1} x^{h}+a_{2} x^{k}, a_{0} a_{1} a_{2} \neq 0$. Then $p^{\prime}(x)=\left(h a_{1}+k a_{2} x^{k-h}\right) x^{h-1}$ and so $p^{\prime}\left(x_{1}\right)=0$, where $x_{1}=\left(-a_{1} h / k a_{2}\right)^{1 /(k-h)}$. Since $p(0)=a_{0}, p\left(x_{1}\right)=-a_{0}$ and $p(1)=a_{0}+a_{1}+a_{2}=a_{0}$, we have

$$
p(x)=a_{0}\left\{1+2\left(\frac{k}{h-k}\right)\left(\frac{k}{h}\right)^{h /(k-h)}\left(x^{h}-x^{k}\right)\right\}
$$

and $M=\left|a_{0}\right|$.

4. Four Exponents

To derive an o.p. with exponents $0, h, 2 h, 4 h$, we first consider

$$
\begin{equation*}
p(x)=1+b_{1} x+b_{2} x^{2}+b_{3} x^{4}, \quad b_{1} b_{2} b_{3} \neq 0 \tag{4.1}
\end{equation*}
$$

Then $p(0)=1, p\left(x_{1}\right)=-1, p\left(x_{2}\right)=1, p(1)=-1$ where $0<x_{1}<x_{2}<1$ and $p^{\prime}\left(x_{1}\right)=p^{\prime}\left(x_{2}\right)=0$. Eliminating b_{1}, b_{2}, b_{3} and x_{2}, we obtain

$$
\begin{equation*}
54 x_{1}^{5}+99 x_{1}^{4}+64 x_{1}^{3}+6 x_{1}^{2}-6 x_{1}-1=0 \tag{4.2}
\end{equation*}
$$

Since $-\frac{1}{2}$, which lies outside $[0,1]$, is a root of (4.2), we are able to write

$$
x_{1}^{4}+\frac{4}{3} x_{1}^{3}+\frac{14}{27} x_{1}^{2}-\frac{4}{27} x_{1}-\frac{1}{27}=0 .
$$

This equation has two nonreal roots, one negative root and one positive root. Hence

$$
\begin{equation*}
x_{1}=\frac{1}{9}\left[2 \sqrt{3}-3+\sqrt{6}(\sqrt{3}-1)^{1 / 2}\right]=0.28443158 \ldots \tag{4.3}
\end{equation*}
$$

Furthermore

$$
\begin{align*}
& b_{1}=\frac{-4\left(1+x_{1}\right)^{2}}{x_{1}\left(1+2 x_{1}\right)}=-14.788327 \ldots \\
& b_{3}=\frac{-2}{x_{1}^{2}\left(2 x_{1}+1\right)}=-15.757572 \ldots \tag{4.4}\\
& b_{2}=-\left(2+b_{1}+b_{3}\right)=28.545899 \ldots
\end{align*}
$$

Note that $1+b_{1} x^{h}+b_{2} x^{2 h}+b_{3} x^{4 h}=p_{h}(x)$ is an o.p. with exponents $0, h$, $2 h$ and $4 h$. Finally $M p_{h}(x)$ and $-M p_{h}(x)$ are both oscillating polynomials with exponents $0, h, 2 h, 4 h$ such that

$$
\max _{[0,1]}\left| \pm M p_{h}(x)\right|=M .
$$

5. Values for $E_{n, k}, 2 \leqslant k \leqslant 5$

(i) Suppose that

$$
\begin{equation*}
p_{n, k}^{*}(y)=a_{0}+y+a_{1} y^{k}+a_{2} y^{2 k}+\cdots+a_{n} y^{n k} \tag{5.1}
\end{equation*}
$$

is the o.p. with exponents $0,1, k, 2 k, \ldots, n k$. Consider the case $k=2$ and write $y^{2}=x$. Then

$$
\begin{equation*}
E_{n, 2}=\max _{(0,1]}\left|(x)^{1 / 2}-\left(-\sum_{i=0}^{n} a_{i} x^{i}\right)\right| . \tag{5.2}
\end{equation*}
$$

Note that

$$
\begin{aligned}
E_{n, 2} & =\max _{[-1,1]}| | x\left|-\left(-\sum_{i=0}^{n} a_{i} x^{2 t}\right)\right| \\
& =\min _{c i} \max _{[-1,1]}| | x\left|-\left(\sum_{i=0}^{2 n} c_{i} x^{i}\right)\right| .
\end{aligned}
$$

From (4.1) we have

$$
p_{2,2}^{*}(y)=1 / b_{1}+y+\left(b_{2} / b_{1}\right) y^{2}+\left(b_{3} / b_{1}\right) y^{4},
$$

where b_{1}, b_{2}, b_{3} are given by (4.4). Also

$$
\begin{equation*}
E_{2,2}=1 /\left|b_{1}\right|=.06762 \ldots \tag{5.3}
\end{equation*}
$$

We shall write for the o.p. with exponents $0,1, k, 2 k, \ldots, n k$ and constant term equal to 1 ,

$$
\begin{equation*}
p_{n, k}(y)=\frac{1}{a_{0}} p_{n, k}^{*}(y)=1+y / a_{0}+\left(a_{1} / a_{0}\right) y^{k}+\cdots+\left(a_{n} / a_{0}\right) y^{n k} \tag{5.4}
\end{equation*}
$$

(ii) The values of $E_{n, 2}$, when $3 \leqslant n \leqslant 23$, and the oscillating polynomials for $3 \leqslant n \leqslant 12$, are tabulated in [3]. We list below the oscillating polynomials $p_{n, k}$ and the values of $E_{n, k}$ when $k=3,4,5$ and $n=1,2,3$.

$$
\begin{aligned}
& p_{1,3}(x)=1-5.19615 x+5.19615 x^{3} \\
& E_{1,3}=.19245 \\
& p_{2,3}(x)=1-7.87889 x+18.8545 x^{3}-12.9757 x^{6} \\
& E_{2,3}=.126921 \\
& p_{3,3}(x)=1-10.2167 x+41.4544 x^{3}-75.4902 x^{6}+44.2526 x^{9} \\
& E_{3,3}=.097879 \\
& p_{1,4}(x)=1-4.23307 x+4.23307 x^{4} \\
& E_{1,4}=.236235
\end{aligned}
$$

$$
\begin{aligned}
& p_{2,4}(x)=1-5.80871 x+15.5433 x^{4}-11.7346 x^{8} \\
& E_{2,4}=.172155 \\
& p_{3,4}(x)=1-7.06647 x+34.2885 x^{4}-68.6003 x^{8}+41.3782 x^{12} \\
& E_{3,4}=.141513 \\
& p_{1,5}(x)=1-3.73837 x+3.73837 x^{5} \\
& E_{1,5}=.267496 \\
& p_{2,5}(x)=1-4.82798 x+13.8493 x^{6}-11.0214 x^{10} \\
& E_{2,5}=.207126 \\
& p_{3,5}(x)=1-5.65136 x+30.6244 x^{5}-64.6469 x^{10}+39.6738 x^{15} \\
& E_{3,5}=.176949
\end{aligned}
$$

By direct calculations one can easily verify the following:

$$
E_{1,3}=3^{-3 / 2}, \quad E_{1,4}=(3 / 2) 4^{-4 / 3}, \quad E_{1,5}=(2) 5^{-5 / 4}
$$

6. Lower Bound for $E_{n, 3}, n \geqslant 2$

Let $r(x)$ be the o.p. $x+c_{2} x^{6}+c_{3} x^{9}+\cdots+c_{n} x^{3 n}$ with exponents $1,6,9, \ldots$, $3 n$ and let $q(x)$ be the o.p.

$$
x+b_{2} x^{5}+b_{3} x^{7}+b_{4} x^{11}+\cdots+b_{i} x^{\alpha_{l}}+\cdots+b_{n} x^{\alpha_{n}}
$$

where α_{i} is the odd integer between $3 i-3$ and $3 i$. By property (iv),

$$
\max |r(x)|>\max |q(x)|
$$

Since $q(x)$ has fewer exponents than the Chebyshev polynomial $T_{\alpha_{n}}(x)$ which is the o.p. with exponents $1,3,5, \ldots, \alpha_{n}$, we have

$$
\max _{[0,1]}|q(x)|>\max _{[0,1]}\left|\frac{T_{\alpha_{n}}(x)}{\alpha_{n}}\right| \geqslant \frac{1}{3 n-1} .
$$

Hence for any polynomial

$$
\begin{gather*}
S(x)=x+b_{2} x^{6}+b_{3} x^{9}+\cdots+b_{n} x^{3 n}, \tag{6.1}\\
\max _{[0,1]}|S(x)|>1 /(3 n-1) . \tag{6.2}
\end{gather*}
$$

Now write

$$
E_{n, 3}^{\prime}=\min _{a_{i}} \max _{[0,1]}\left|x+a_{1} x^{3}+a_{2} x^{6}+\cdots+a_{n} x^{3 n}\right| .
$$

It is easily seen (cf. [2], p. 29) that

$$
\begin{equation*}
E_{n, 3}>E_{n, 3}^{\prime} / 2 \tag{6.3}
\end{equation*}
$$

Consider the o.p. $p(x)=x+a_{1} x^{3}+a_{2} x^{6}+\cdots+a_{n} x^{3 n}$. For each $x \in[0,1]$ and for $\mu>0$, we have

$$
\left|p\left(\frac{x}{1+\mu}\right)\right|=\left|\frac{x}{1+\mu}+a_{1}\left(\frac{x}{1+\mu}\right)^{3}+a_{2}\left(\frac{x}{1+\mu}\right)^{6}+\cdots+a_{n}\left(\frac{x}{1+\mu}\right)^{3 n}\right| \leqslant E_{n, 3}^{\prime}
$$

or

$$
\left|x(1+\mu)^{2}+a_{1} x^{3}+a_{2} \frac{x^{6}}{(1+\mu)^{3}}+\cdots+a_{n} \frac{x^{3 n}}{(1+\mu)^{3 n-3}}\right| \leqslant(1+\mu)^{3} E_{n, 3}^{\prime} .
$$

This inequality can be written as

$$
\left|p(x)+\left(2 \mu+\mu^{2}\right)\left(x+b_{2} x^{6}+b_{3} x^{9}+\cdots+b_{n} x^{3 n}\right)\right| \leqslant(1+\mu)^{3} E_{n, 3}^{\prime}
$$

Hence

$$
\begin{equation*}
-|p(x)|+\left(2 \mu+\mu^{2}\right)|S(x)| \leqslant(1+\mu)^{3} E_{n, 3}^{\prime}, \tag{6.4}
\end{equation*}
$$

where $S(x)$ is a polynomial of the form given in (6.1). Since (6.4) holds for all $x \in[0,1]$,

$$
\begin{equation*}
\left(2 \mu+\mu^{2}\right) \max _{[0,1]}|S(x)| \leqslant E_{n, 3}^{\prime}\left\{(1+\mu)^{3}+1\right\} \tag{6.5}
\end{equation*}
$$

From (6.2) and (6.5) we obtain

$$
E_{n, 3}^{\prime}>1 /(3 n-1)\left(2 \mu+\mu^{2}\right) /\left((1+\mu)^{3}+1\right)
$$

Taking $\mu=1$, we get

$$
E_{n, 3}^{\prime}>\frac{1}{3(3 n-1)}
$$

and hence, from (6.3) we have

$$
\begin{equation*}
E_{n, 3}>1 / 6(3 n-1) \tag{6.6}
\end{equation*}
$$

7. LOWER BOUND FOR $E_{n, k}, k \geqslant 4$

Consider the o.p. $q_{n, k}(x)=x+a_{1} x^{k}+a_{2} x^{2 k}+\cdots+a_{n} x^{n k}, n \geqslant 2, k \geqslant 4$. Let $\alpha_{1}=3$ and, for $i=2,3, \ldots, n$, let

$$
\alpha_{i}= \begin{cases}(i-1) k+1 & \text { if } k \text { is even or } i \text { is odd }, \\ (i-1) k+2 & \text { otherwise. }\end{cases}
$$

Note that the α_{i} are all odd. Let $r(x)$ be the o.p.

$$
r(x)=x+b_{1} x^{\alpha_{1}}+b_{2} x^{\alpha_{2}}+\cdots+b_{n} x^{\alpha_{n}}
$$

By property (iv),

$$
\begin{aligned}
\max _{[0,1]}\left|q_{n, k}(x)\right| & >\max _{[0,1]}|r(x)| \\
& >\max _{[0,1]}\left|\frac{T_{\alpha_{n}}(x)}{\alpha_{n}}\right|=\frac{1}{\alpha_{n}} .
\end{aligned}
$$

As in (6.3), $E_{n, k}>E_{n, k}^{\prime} / 2$, and so we get, for $n \geqslant 2, k \geqslant 4$,

$$
E_{n, k}> \begin{cases}\frac{1}{2(k(n-1)+1)} & \text { if } k \text { is even or } n \text { is odd } \tag{7.1}\\ \frac{1}{2(k(n-1)+2)} & \text { otherwise. }\end{cases}
$$

References

1. Serge Bernstein, Sur la meilleure approximation de $|x|$ par des polynômes de dégrès donnés. Acta Math. 37 (1913), 1-57.
2. J. C. Burkile, Lectures on approximation by polynomials. Tata Institute, Bombay, 1959.
3. Richard A. Bell and S. M. Shah, Oscillating polynomials and approximations to $|x|$. To appear in Ananda Rao Memorial Volume.

[^0]: ${ }^{1}$ The research of this author was supported by the National Science Foundation under Grant GP-7544.

